If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 0 = -2y2 + 25y + 13 Reorder the terms: 0 = 13 + 25y + -2y2 Solving 0 = 13 + 25y + -2y2 Solving for variable 'y'. Combine like terms: 0 + -13 = -13 -13 + -25y + 2y2 = 13 + 25y + -2y2 + -13 + -25y + 2y2 Reorder the terms: -13 + -25y + 2y2 = 13 + -13 + 25y + -25y + -2y2 + 2y2 Combine like terms: 13 + -13 = 0 -13 + -25y + 2y2 = 0 + 25y + -25y + -2y2 + 2y2 -13 + -25y + 2y2 = 25y + -25y + -2y2 + 2y2 Combine like terms: 25y + -25y = 0 -13 + -25y + 2y2 = 0 + -2y2 + 2y2 -13 + -25y + 2y2 = -2y2 + 2y2 Combine like terms: -2y2 + 2y2 = 0 -13 + -25y + 2y2 = 0 Factor a trinomial. (-1 + -2y)(13 + -1y) = 0Subproblem 1
Set the factor '(-1 + -2y)' equal to zero and attempt to solve: Simplifying -1 + -2y = 0 Solving -1 + -2y = 0 Move all terms containing y to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + -2y = 0 + 1 Combine like terms: -1 + 1 = 0 0 + -2y = 0 + 1 -2y = 0 + 1 Combine like terms: 0 + 1 = 1 -2y = 1 Divide each side by '-2'. y = -0.5 Simplifying y = -0.5Subproblem 2
Set the factor '(13 + -1y)' equal to zero and attempt to solve: Simplifying 13 + -1y = 0 Solving 13 + -1y = 0 Move all terms containing y to the left, all other terms to the right. Add '-13' to each side of the equation. 13 + -13 + -1y = 0 + -13 Combine like terms: 13 + -13 = 0 0 + -1y = 0 + -13 -1y = 0 + -13 Combine like terms: 0 + -13 = -13 -1y = -13 Divide each side by '-1'. y = 13 Simplifying y = 13Solution
y = {-0.5, 13}
| -7X-14Y=-28 | | 2r^2-4r-12=r^2 | | 0=6(2)+b | | 7=0(10)+b | | y+3=7x-21 | | .5c-13=7 | | 5m+10=5 | | 5m+t=55 | | -x^3+x^2*8x+16=0 | | 5=-1(4)+b | | 22=2+3x | | 12t=-144 | | 9x-2=8x-3 | | 3x-5=4+10 | | 3(y-2)=4(y+2) | | b*5=20 | | x+2=9*4 | | j-1=5j+19 | | 12=10p-5p | | t+14=27 | | F(5)=3x^3-7x+3 | | 5x^2+32x=-12 | | T-0.63=2.37 | | 100+50m=500 | | 5n+1=18 | | 44=2(2+x+3x) | | (15x-2)*3+6=-23 | | 0,166666666667x=3 | | 9x^2+45x-16=0 | | y+1=2x-1 | | -4n-3(n-4)=-5(n+4) | | 5x+12=6x-12 |